Imine-Linked Polymer Based Nitrogen-Doped Porous Activated Carbon for Efficient and Selective CO2 Capture
نویسندگان
چکیده
The preparation of nitrogen-doped activated carbon (NACs) has received significant attention because of their applications in CO2 capture and sequestration (CCS) owing to abundant nitrogen atoms on their surface and controllable pore structures by carefully controlled carbonization. We report high-surface-area porous N-doped activated carbons (NAC) by using soft-template-assisted self-assembly followed by thermal decomposition and KOH activation. The activation process was carried out under different temperature conditions (600-800 °C) using polyimine as precursor. The NAC-800 was found to have a high specific surface area (1900 m2 g-1), a desirable micropore size below 1 nm and, more importantly, a large micropore volume (0.98 cm3 g-1). NAC-800 also exhibits a significant capacity of CO2 capture i.e., over 6. 25 and 4.87 mmol g-1 at 273 K and 298 K respectively at 1.13 bar, which is one of among the highest values reported for porous carbons so far. Moreover, NAC also shows an excellent separation selectivity for CO2 over N2.
منابع مشابه
Nitrogen-doped porous carbon materials generated via conjugated microporous polymer precursors for CO2 capture and energy storage
Heteroatom doping and well-tuned porosity are regarded as two important factors of porous carbon materials (PCMs) for various applications. However, it is still difficult to tune a single variable while retaining the other factors unchanged, which restricts rational and systematic research on PCMs. In this work, in situ nitrogen-doped porous carbon material (NPCM-1) and its non-doped analogue P...
متن کاملBiomimetic Sorbents for Selective CO2 Capture Investigators
Nitrogen-doped hierarchical mesoporous carbon is synthesized via molecular coassembly and polymerization of a rationally designed pyrrole derivative via softtemplating with a triblock copolymer in solution, followed by mild carbonization at 350 C and chemical activation at 500 C. The nitrogen-rich porous carbon possesses 5.8 wt% N and has a high surface area of 942 m g with hierarchically dis...
متن کاملOne-Step Synthesis of Microporous Carbon Monoliths Derived from Biomass with High Nitrogen Doping Content for Highly Selective CO2 Capture
The one-step synthesis method of nitrogen doped microporous carbon monoliths derived from biomass with high-efficiency is developed using a novel ammonia (NH3)-assisted activation process, where NH3 serves as both activating agent and nitrogen source. Both pore forming and nitrogen doping simultaneously proceed during the process, obviously superior to conventional chemical activation. The as-p...
متن کاملAssessment of the role of micropore size and N-doping in CO2 capture by porous carbons.
The role of micropore size and N-doping in CO2 capture by microporous carbons has been investigated by analyzing the CO2 adsorption properties of two types of activated carbons with analogous textural properties: (a) N-free carbon microspheres and (b) N-doped carbon microspheres. Both materials exhibit a porosity made up exclusively of micropores ranging in size between <0.6 nm in the case of t...
متن کاملThe increased CO2 adsorption performance of chitosan-derived activated carbons with nitrogen-doping.
Highly porous nitrogen-doped activated carbons (NACs) were prepared by the chemical activation of chitosan using alkali carbonates. The NACs exhibited extremely high CO2 capacities of 1.6 mmol g(-1) (15 kPa) and 4.9 mmol g(-1) (100 kPa) at 25 °C. Nitrogen atoms doped into carbon frameworks clearly enhanced CO2 adsorption at low partial pressures.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016